
Passenger [Name] is a [Age] year old [Sex]... 

Passenger John Doe is a 26 year old male... 

A methodology for generating text from tabular data
template = f”Passenger {df[name]} is a {df[age]} year old 

{df[sex]}”

● Baseline Datasets (B): The baseline datasets, primarily sourced from the 
UCI Machine Learning Repository [2], are used for pre-processing 
experiments and benchmark studies.

● Experimental Datasets (E): The experimental datasets consist of tabular 
data with unique characteristics for benchmark studies, including 
distribution shifts, bias, high dimensionality, and class imbalance.

● Benchmark: We select a model through benchmarks involving 
various pre-trained encoder language models, including those from 
the Massive Text Embedding Benchmark (MTEB) to represent 
modern methods. Due to compute limitations, we chose embedding 
models with fewer than 1 billion parameters.
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Feature Scaling
● Scaling numerical data may 

not always be effective, 
particularly when the dataset 
contains outliers or 
non-normal distribution.

● This observation is different 
from established tabular 
machine learning practices.

Data Imputation
● The method employed for data 

imputation significantly influences 
the probability of the final 
outcome.

● This data curation technique 
should be further explored. 

Feature Selection
● In two datasets, it has 

demonstrated that feature 
selection plays a critical role in 
optimizing performance.

● This observation is analogous 
to established practices tabular 
machine learning.

● We identified that text serialization 
differs from tabular machine 
learning for data curation.

● We also identified that pre-trained 
models with supervised fine-tuning 
do not represent a state of the 
art methodology for tabular ML.

Metrics: Accuracy, F1 Scores, Area Under the Receiver Operating Characteristic, 
Matthews Correlation Coefficient (MCC). 

(Macro-averaging for non-binary classification cases)

Verdict: Our benchmarking study reveals that pre-trained models with 
supervised fine-tuning (SFT) currently do not outperform traditional machine 
learning models and some deep learning tabular models, indicating future 
research directions for language models in solving tabular tasks.
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Background: The most common machine learning (ML) tasks use tabular 
datasets, organized in table format. Recent advancements in language 
models (LMs) prompt a need to understand how these models and methods 
align with traditional ML paradigms.

Problem Formulation: This research aims to address two questions:
1. Does Text serialization require similar data curation techniques as tabular 

data?
2. How do pre-trained language models with supervised fine tuning (SFT) 

compare to traditional ML models and deep learning tabular models? 

1. Motivation 5. Data Curation Experiments

Text Serialization: Converting Data From Tabular to Text Derived from 
TabLLM [1]. Analogous to a game of Madlibs. 
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1. Data Curation Experiments 2. Benchmark

Name Age Sex

… 26 M

… 54 F

Titanic Dataset
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