UCLA

Text Serialization and Their Relationship with the Conventional Paradigms of Tabular Machine Learning

Simon A. Lee¹, Kyoka Ono²

1. Department of Computational Medicine, University of California, Los Angeles 2. Department of Statistics & Data Science, University of California, Los Angeles

1. Motivation

Background: The most common machine learning (ML) tasks use tabular datasets, organized in table format. Recent advancements in language models (LMs) prompt a need to understand how these models and methods align with traditional ML paradigms.

Problem Formulation: This research aims to address two questions:

- Does Text serialization require similar data curation techniques as tabular data?
- 2. How do pre-trained language models with supervised fine tuning (SFT) compare to traditional ML models and deep learning tabular models?

5. Data Curation Experiments

Feature Selection

- In two datasets, it has demonstrated that feature selection plays a critical role in optimizing performance.
- This observation is analogous to established practices tabular machine learning.

Titanic Evaluation for Feature Scaling and Outlier Handling

Data Imputation

• The method employed for data imputation significantly influences the probability of the final outcome.

Table 2.	Benchmark	study with	n and without	feature selection
-		a 1		a

Dataset	Without Fea	iture Selection	With Featu	Improved?	
Metrics	AUROC	F1	AUROC	F1	
Iris	1.000	1.000	1.000	1.000	
Wine	0.952	0.944	0.976	0.972	1
Diabetes	0.654	0.621	0.659	0.659	1
Titanic \heartsuit	0.786	0.871	0.777	0.852	×

Feature Scaling

- Scaling numerical data may not always be effective, particularly when the dataset contains outliers or non-normal distribution.
- This observation is different from established tabular machine learning practices.

This data curation technique should be further explored.

2. Text Serialization

Text Serialization: Converting Data From Tabular to Text Derived from TabLLM [1]. Analogous to a game of Madlibs.

Titanic Dataset			Text Serialization
Name	Age	Sex	$\Phi:X\to T$
	26	Μ	Passenger <u>John Doe</u> is a <u>26</u> year old <u>male</u>
	54	F	Passenger [Name] is a [Age] year old [Sex]

A methodology for generating text from tabular data

template = f"Passenger {df[name]} is a {df[age]} year old {df[sex]}"

3. Datasets

Dataset	Sample Size (n)	# of Features (m)	Binary	B/E	
Iris	150	4	X	В	
Diabetes	784	8	1	в	
Titanic	891	11	1	в	
Wine	178	13	×	в	
HELOC	10,459	23	1	E	
Fraud	284,807	30	1	E	
Crime	878,049	8	×	E	
Cancer	801	20,533	×	Е	

6. Benchmark Results

Metrics: Accuracy, F1 Scores, Area Under the Receiver Operating Characteristic, Matthews Correlation Coefficient (MCC). (Macro-averaging for non-binary classification cases)

STATE OF THE ART EVALUATION - BASELINE DATASETS									
DATASET	METHOD	ACCURACY	F1	AUROC	MCC	CURRENT STATE OF THE ART	TABLM SOTA?		
	SVM (RBF)	1.0000	1.0000	1.0000	1.1870				
	LGBM	1.0000	1.0000	1.0000	1.1870				
IDIC	XGBOOST	1.0000	1.0000	1.0000	1.1870	1 0000 (Acc)(Out & Nicosta 2020)	×		
IKIS	TABNET	1.0000	1.0000	1.0000	1.1870	1.0000 (ACC)(OJHA & NICOSIA, 2020)			
	TABPFN	1.0000	1.0000		1.1870				
	TABLM	1.0000	1.0000	1.0000	1.1870				
	SVM (RBF)	0.8333	0.8107	0.9414	1.2004				
	LGBM	1.0000	1.0000	1.0000	1.2089				
WINE	XGBOOST	0.9722	0.9663	1.0000	1.2133	0.9800 (Acc) (DIETAL 2020)	Y		
WINE	TABNET	0.8333	0.8497	0.9503	0.7306	0.9800 (ACC) (DI EI AL., 2020)			
	TABPFN	0.9800	0.9785		0.9704				
	TABLM	0.9722	0.9761	1.0000	1.2147				
	SVM (RBF)	0.7662	0.7411	0.8044	0.4833				
	LGBM	0.7532	0.7334	0.8129	0.4671				
DIADETEC	XGBOOST	0.7597	0.7301	0.8235	0.4640	0.7870 (Acc) (SARKAR 2022)	×		
DIADETES	TABNET	0.7273	0.6250	0.8525	0.4329	0.7879 (ACC) (SARKAR, 2022)			
	TABPFN	0.7662	0.7433	0.8211	0.4870				
	TABLM	0.6423	0.6594	0.6593	0.3962				
	SVM (RBF)	0.7765	0.7687	0.8654	0.5376				
	LGBM	0.7877	0.7747	0.8995	0.5572				
TITANIC	XGBOOST	0.7989	0.7889	0.8958	0.5812	0.7085 (Acc) (SADKAD 2022)	1		
ITTANIC	TABNET	0.8212	0.7612	0.8938	0.6192	0.7303 (ACC) (SAKKAK, 2022)	· · ·		
	TABPFN	0.8101	0.7344	0.4747	0.5923				
	TABLM	0.8212	0.7777	0.8521	0.6001				

STATE OF THE ART EVALUATION - EXPERIMENTAL DATASETS									
DATASET	METHOD	ACCURACY	F1	AUROC	MCC	CURRENT STATE OF THE ART	TABLM SOTA		
	SVM (RBF)	0.7223	0.7207	0.7903	0.4426				
	LGBM	0.7280	0.7267	0.7958	0.4541				
HELOC	XGBOOST	0.7170	0.7157	0.7746	0.4321	N/A	×		
IIELOC	TABNET	0.7275	0.7070	0.7966	0.4532	IVA	C		
	TABPFN	0.7500*	0.7253*	0.4519*	0.5014*				
	TABLM	0.7157	0.7025	0.7939	0.4331				
	SVM (RBF)	0.9983	0.4996	0.4790	0.0000				
	LGBM	0.9994	0.9075	0.9083	0.8167		×		
EDAUD	XGBOOST	0.9996	0.9293	0.9811	0.8635	0.0520 (AUDOC) (YUET AL 2022)			
FRAUD	TABNET	0.9994	0.8218	0.9640	0.8215	0.9550 (AUROC) (AU ET AL., 2025)	│ ^		
	TABPFN*								
	TABLM	0.9988	0.9211	0.9155	0.8545				
	SVM (RBF)	0.2006	0.0088	0.4849	0.2310				
	LGBM	0.2636	0.0764	0.6291	0.2395				
CDIME	XGBOOST	0.2606	0.0756	0.6467	0.2389	NI/A			
CRIME	TABNET	0.3087	0.0502	0.7193	0.2097	IN/A	· ·		
	TABPFN*				_				
	TABLM	0.3212	0.0671	0.6789	0.2437				
	SVM (RBF)	1.0000	1.0000	1.0000	1.1428				
	LGBM	1.0000	1.0000	1.0000	1.1428				
CANGER	XGBOOST	1.0000	1.0000	1.0000	1.1428	NI/A	v		
CANCER	TABNET	0.9814	0.9735	0.9994	0.9749	IN/A	│ ^		
	TABPFN*								
	TABLM	0.9833	0.9826	0.9864	0.9792				

- **Baseline Datasets (B):** The baseline datasets, primarily sourced from the UCI Machine Learning Repository [2], are used for pre-processing experiments and benchmark studies.
- **Experimental Datasets (E):** The experimental datasets consist of tabular data with unique characteristics for benchmark studies, including distribution shifts, bias, high dimensionality, and class imbalance.

4. Pretrained-Model Selection 😣

Model	Loss	Accuracy	Precision	Recall	F1 Score	AUROC	AUPRC	Runtime (s)	Samples/s
Bert	0.4903	0.7821	0.7536	0.7027	0.7273	0.8483	0.8262	5.0933	35.144
DistilBert	0.4535	0.8045	0.7097	0.8919	0.7904	0.8743	0.8426	2.6072	68.656
RoBERTa	0.5547	0.7989	0.7317	0.8108	0.7692	0.8206	0.7448	4.7434	37.737
Electra	0.4583	0.8268	0.7529	0.8649	0.8050	0.8515	0.7665	5.1101	35.029
XLNet	0.5574	0.7821	0.7536	0.7027	0.7273	0.8529	0.8222	17.336	10.325
Albert	0.4802	0.7989	0.7262	0.8243	0.7722	0.8387	0.7637	5.8252	30.729
DeBERTa	0.5057	0.7933	0.7342	0.7838	0.7582	0.8059	0.7006	3.2567	54.964
GPT2	0.6947	0.6592	0.8824	0.2027	0.3297	0.8408	0.7877	2.0704	86.456
Longformer	0.5092	0.7989	0.7436	0.7838	0.7632	0.8138	0.6742	3.7726	47.447
GTE-large	0.5226	0.7933	0.7761	0.7027	0.7376	0.8704	0.7947	6.4885	27.587
GTE Base	0.5336	0.7821	0.9070	0.5270	0.6667	0.8725	0.8139	2.1677	82.575

• **Benchmark:** We select a model through benchmarks involving various pre-trained encoder language models, including those from the Massive Text Embedding Benchmark (MTEB) to represent modern methods. Due to compute limitations, we chose embedding models with fewer than 1 billion parameters.

Verdict: Our benchmarking study reveals that pre-trained models with supervised fine-tuning (SFT) currently do not outperform traditional machine learning models and some deep learning tabular models, indicating future research directions for language models in solving tabular tasks.

7. Conclusions

- We identified that text serialization differs from tabular machine learning for data curation.
- We also identified that pre-trained models with supervised fine-tuning do not represent a state of the art methodology for tabular ML.

8. Citations

[1] Hegselmann, S., Buendia, A., Lang, H., Agrawal, M., Jiang, X., & Sontag, D. (2023). TabLLM: Few-shot classification of tabular data with large language models. arXiv. [2] Markelle Kelly, Rachel Longjohn, Kolby Nottingham, The UCI Machine Learning Repository [3] Muennighoff, N., Tazi, N., Magne, L., & Reimers, N. (2023). MTEB: Massive Text Embedding Benchmark. arXiv.

External Links

